

The Role of Reinsurance in a Total Risk Management Program

John Beckman Stephen Mildenhall

CAS CARe Seminar Baltimore, June 1999

2/15/2024, 1

- Risks faced by an (re-)insurer (JB)
- Need for aggregate loss distributions (SM)
- Measures of risk (SM)
- Creating aggregate distributions (SM)
- □ Strategy design and implementation (JB)

Risks Faced by Insurers

- Lowe & Stanard (Spring 1996 Forum) risks faced by an insurance enterprise
 - Liability Risk
 - □ Asset Risk
 - Business Risk

Risks Faced by Insurers

- Underwriting Risk
- Balance Sheet Risk
- Business Risk
- Organizational Risk

- Analysis of risks shows understanding of liabilities is key
- Insurance liabilities variable in amount and timing
- Initial focus is on amount of loss
 - □ Suggests an accident year ultimate view
 - Future work to consider timing risk (see my upcoming DFA Seminar talk in Chicago)

- Design criteria for producing aggregates
 - □ Include all lines of business, all liabilities
 - Appropriate treatment of catastrophes
 - Capture correlation
 - Within year, between line
 - Between years

- All lines of business
 - Total risk management program must take portfolio view
 - Achieving balance at department / business unit levels expensive and serves no economic purpose
 - □ Risk fundamentally a question of aggregation

- All lines of business
 - Effect of adding uncorrelated risk on extreme percentiles is less than expected, especially after considering pricing
 - Example: Expected loss ratio 80% on \$375M premium, losses lognormal with CV 0.20
 - □ 99%ile loss ratio is 124%
 - Add ILW type loss, 5% chance of \$50M payout,
 95% chance of \$0M payout, priced at 50% loss ratio

Example continued

- □ ILW premium is \$2.5M / 0.5 = \$5.0M
- □ 99%ile losses increase by only \$4.8M to \$471M
- □ 99%ile loss ratio unchanged at 124%
- Shows combined effect of adding lower loss ratio business and portfolio effect on losses
- Computation is based on conditional probability: P(L+S < x) = P(L < x-s|S=s)P(S=s) + P(L < x|S=0)P(S=0) = 0.05 P(L < x-s) + 0.95 P(L < x)where L = base losses, S = added ILW losses

Catastrophes

- Major source of variability in liabilities
- Major source of correlation between lines of business
- Sophisticated models available to quantify amount and distribution of losses
- Recommend modeling cat losses separately from non-cat losses

- Capture correlation
 - □ Cat, discussed above
 - Non-cat correlations in loss ratios largely driven by **pricing** (year-to-year) and **property**
 - Beware statewide splits of data which introduce hard-to-model correlations
 - One-year accident year plans can incorporate common pricing movements
 - □ Allows realistic model of loss ratio

Measures of Risk

- Risk management process requires quantifiable measures of risk and setting targets for risk constraints
- Measures should capture solvency and stability constraints
- Solvency is related to probability of loss in excess of a key threshold, such as combined ratio which would trigger down-grade

Measures of Risk

- **Stability** is desire for actual results to be reasonably close to plan
- Possible measures include variance, standard deviation, CV, down-side risk
- Percentile related measures more direct
 - 1 year out of 10, combined ratio should be between plan +x and plan +y
 - □ Lower bound is guide to suitable risk appetite

Measures of Risk

- Graphic illustrates constraints
 - Stability is horizontal constraint
 - Solvency is vertical constraint

Creating Aggregate Loss Distributions

- Many tools available for making aggregates
 - ☐ See other sessions at CARe!
- Frequency and severity approach
- Stratify book by attachment and limit
- Model cats separately
- Method of moments to match three moments for large books

Creating Aggregate Loss Distributions

- Fast Fourier Transform methods
 - Programming overhead to set up
 - □ S. Wang Proceedings paper (www.casact.org)
- Simulation too slow
- Recursive methods more of academic interest and very computationally intensive

Creating Aggregate Loss Distributions

- Correlation between lines: use Iman-Conover shuffling method or other copula based method
 - □ Again, see Wang's paper
 - Gives sample from multivariate distribution with desired correlation structure
 - Easy to implement
 - Can be done in Excel
 - Basis for correlations in At Risk

- GOAL: Maximize profit objective subject to risk constraints
 - Requires quantifiable **measures** of risk
 - □ Requires **targets** for risk constraints
 - Requires **structuring** risk management program to meet targets
 - Requires **monitoring** of performance against targets

Quantifiable Measures of Risk

- Solvency Measures
 - Probability of Ruin
 - Probability of Impairment
 - Probability of Employment
- Stability Measures
 - □ Probability of Combined Ratio > x%
 - Probability of Exceeding Plan by y%
 - Probability of Under Performing the Market by z%

- Establishing Targets
- Structuring Risk Management Program
 - Mix of Business
 - Net Retained Lines
 - □ Reinsurance!
- Implementation

- Use of Reinsurance
 - Have a defined purpose for reinsurance
 - Promote Stability
 - Promote Solvency
 - There are other uses for reinsurance
 - Evaluate the benefit provided versus the cost
 - Continue to monitor performance against expectations

Reinsurance vs. Capital Markets

Risk Matching
Accounting
Trans. Expense
Price

Reinsurance	Securitization
Tailored	Standardized
Reinsurance	Varies/Complex
Low	High
77	771